Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia
نویسندگان
چکیده
Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.
منابع مشابه
Isolation of Two Strong Poly (U) Binding Proteins from Moderate Halophile Halomonas eurihalina and Their Identification as Cold Shock Proteins
Cold shock proteins (Csp) are known to be expressed in response to sudden decrease in temperature. They are thought to be involved in a number of cellular processes viz., RNA chaperone activity, translation, transcription, nucleoid condensation. During our studies on ribosomal protein S1 in moderate halophile Halomonas eurihalina, we observed the presence of two strong poly (U) binding proteins...
متن کاملClustered organization and transcriptional analysis of a family of five csp genes of Lactococcus lactis MG1363.
A family of genes encoding cold-shock proteins, named cspA, cspB, cspC, cspD and cspE, was cloned and sequenced from Lactococcus lactis MG1363. The genes cspA and cspB and the genes cspC and cspD are located in tandem repeats, an organization of csp genes that has never been encountered before. The five genes encode small (7.1-7.6 kDa) proteins with high mutual sequence identities (up to 85%) a...
متن کاملCspB of an arctic bacterium, Polaribacter irgensii KOPRI 22228, confers extraordinary freeze-tolerance
Freezing temperatures are a major challenge for life at the poles. Decreased membrane fluidity, uninvited secondary structure formation in nucleic acids, and protein cold-denaturation all occur at cold temperatures. Organisms adapted to polar regions possess distinct mechanisms that enable them to survive in extremely cold environments. Among the cold-induced proteins, cold shock protein (Csp) ...
متن کاملConserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity
Cold shock proteins (Csps) enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal p...
متن کاملChanges in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum.
An inverse PCR strategy based on degenerate primers has been used to identify new genes of the cold shock protein family in Lactobacillus plantarum. In addition to the two previously reported cspL and cspP genes, a third gene, cspC, has been cloned and characterized. All three genes encode small 66-amino-acid proteins with between 73 and 88% identity. Comparative Northern blot analyses showed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016